Volume 03, Issue 09, 2025 ISSN: 2584-153X

Article ID: G-25-0901

SECONDARY METABOLITES AND THEIR SIGNIFICANCE IN PLANT DEFENSE MECHANISMS

S Priyanga^{*}, S Nadaradjan, K Manoj kumar, N Bavya, A Abisha Makdalin, D Deerajkumar, D Prethikaa, R Rajalakshmi, Savitha

Pandit Jawaharlal Nehru college of Agriculture and Research Institute, Karaikal, UT of Puducherry.

*Corresponding Author Mail ID: priyanga6122002@gmail.com

Introduction

Plants, being sessile organisms, have evolved complex defense systems to survive against a wide variety of biotic stresses such as herbivores, insects, fungi, bacteria, and viruses. One of the most essential weapons in their is the synthesis of secondary arsenal metabolites—a diverse group of organic compounds not directly involved in basic cellular metabolism but crucial for plant protection and survival. According to Bennett and Wallsgrove (1994), these metabolites contribute to chemical defense by acting as repellents, toxins, and signaling molecules, providing both direct and indirect defense. Their role has been increasingly recognized as essential to plant fitness and ecological adaptability (Dixon, 2001).

Classification of Secondary Metabolites in Plant Defense

a) Alkaloids

These nitrogenous compounds have potent effects on herbivore nervous systems. Examples include nicotine in tobacco and morphine in opium poppy. They act as deterrents and toxins, often causing paralysis or death in insects and animals that consume them (Züst & Agrawal, 2016).

b) Terpenoids

Also known as isoprenoids, they are structurally diverse and include monoterpenes, sesquiterpenes, and diterpenes. These substances serve as repellents, feeding deterrents, or toxins. For example, pyrethrins from Chrysanthemum flowers are natural insecticides (Tholl, 2006).

c) Phenolics

This group includes tannins, flavonoids, lignins, and coumarins, which interfere with digestion in herbivores or serve as antimicrobial agents. Phenolics like tannins bind to proteins in herbivore guts, reducing nutrient absorption (Lattanzio et al., 2006).

d) Glucosinolates

Mainly found in cruciferous vegetables (e.g., cabbage, mustard), glucosinolates are hydrolyzed into isothiocyanates upon tissue damage. These products are toxic to many insects and pathogens (Halkier & Gershenzon, 2006).

e) Cyanogenic Glycosides

These compounds release hydrogen cyanide when plant tissues are damaged, effectively inhibiting cellular respiration in herbivores and pathogens (Gleadow & Møller, 2014).

Mechanisms of Defense Using Secondary Metabolites

a) Direct Chemical Defense

Secondary metabolites can kill or inhibit the growth of herbivores and pathogens directly. For example, phytoalexins like pisatin in peas and resveratrol in grapes accumulate after pathogen infection and inhibit fungal growth (Ahuja et al., 2012).

b) Indirect Defense via Signaling and Attraction

Plants emit volatile organic compounds (VOCs) when attacked, which can attract predators or parasitoids of herbivores.

01 | September - 2025 greenaria.in

This indirect defense is an essential ecological interaction that reduces pest populations without direct confrontation (Arimura et al., 2009).

c) Structural Defense Enhancement

Compounds such as lignin, a polymer of phenolic alcohols, reinforce plant cell walls, making them more resistant to penetration by pathogens. Similarly, suberin forms protective layers around wounds or roots (Miedes et al., 2014).

Inducibility and Regulation of Secondary Metabolites

Secondary metabolites are often inducible, meaning they are synthesized in response to an attack. This mechanism allows plants to conserve resources and respond dynamically to threats. Regulatory molecules such as jasmonic acid (JA) and salicylic acid (SA) coordinate these responses (Wasternack & Hause, 2013). JA mainly regulates defense against chewing insects, while SA is more involved in resistance against biotrophic pathogens (Pieterse et al., 2012).

These hormones trigger the expression of genes responsible for the biosynthesis of defense compounds. For example, JA signaling enhances the production of alkaloids and terpenoids, whereas SA signaling is linked to the accumulation of phenolics and pathogenesis-related proteins (Verhage et al., 2010).

Role in Herbivore and Pathogen Interactions

Secondary metabolites shape the coevolutionary relationships between plants and their attackers. Generalist herbivores are often repelled or poisoned by these chemicals, while some specialist herbivores have evolved mechanisms to tolerate or even utilize these compounds (Wink, 2003). For example, the cabbage white butterfly (Pieris rapae) uses glucosinolates to recognize host plants for oviposition (Hopkins et al., 2009).

Similarly, some pathogens may overcome phytoalexin accumulation by detoxifying them, indicating a chemical arms race between plant defense evolution and pathogen adaptation (van Baarlen et al., 2007).

Ecological Significance

Beyond individual plant defense, secondary metabolites play a role in plant-plant and plant-insect communication. For instance, VOCs emitted from attacked plants can prime neighboring plants, enhancing their resistance before actual damage occurs (Heil & Karban, 2010). This phenomenon, known as defense priming, is crucial in natural ecosystems where community-level defense is beneficial.

In addition, compounds like flavonoids contribute to pollinator attraction, linking plant defense and reproductive success in complex ecological networks (Winkel-Shirley, 2001).

Application in Agriculture and Biotechnology

The understanding of secondary metabolites has direct applications in crop protection and breeding. Resistant varieties with elevated levels of secondary metabolites can reduce dependence on chemical pesticides (War et al., 2012). For example, Bt-brinjal and high-glucosinolate mustard have shown promise in sustainable pest control.

Moreover, metabolic engineering approaches allow scientists to enhance or introduce new biosynthetic pathways into crops to produce novel or improved defense compounds. CRISPR-Cas9 tools are now being explored to fine-tune these traits with precision (Zhang et al., 2018).

Examples in Vegetable Crops

Vegetable Crop	Major Defensive Compound	Function
Tomato	Tomatine (alkaloid)	Antifungal, insect deterrent (Roddick, 1989)
Brinjal	Solasodine (alkaloid)	Defense against insects (Das et al., 2011)
Cabbage	Glucosinolates	Breakdown into toxic isothiocyanates (Fahey et al., 2001)

Onion & Garlic	Thiosulfinates (allicin)	Broad- spectrum antimicrobial activity (Block, 2010)
Carrot	Polyacetylenes	Antifungal, antibacterial (Garrod et al., 1996)
Chili	Capsaicin	Deters mammals, affects cell membranes of pathogens (Suzuki & Iwai, 1984)

Conclusion

Secondary metabolites are central to the survival strategy of plants, providing both chemical and ecological defense against a broad spectrum of biotic stresses. As emphasized by Bennett and Wallsgrove (1994), their diversity, inducibility, and multifunctionality make them powerful tools in the evolutionary arms race between plants and their attackers. With advancing molecular and biotechnological tools, these compounds are now at the forefront of sustainable agriculture, offering alternatives to synthetic pesticides while enhancing crop resilience and ecosystem health (Dixon, 2001).

References

- Ahuja, I., Kissen, R., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73–90. https://doi.org/10.1016/j.tplants.2011.11.
- Arimura, G., Matsui, K., & Takabayashi, J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant and Cell Physiology, 50(5), 911–923.
- Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defence mechanisms. New Phytologist,

- 127(4), 617–633. https://doi.org/10.1111/j.1469-8137.1994.tb02968.x
- Block, E. (2010). Garlic and Other Alliums: The Lore and the Science. Royal Society of Chemistry.
- Das, S., Das, P., & Basak, S. (2011).
 Alkaloids and flavonoids of Solanum melongena and its bioactivity.
 Pharmacognosy Journal, 3(24), 64–67.
- Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411(6839), 843–847. https://doi.org/10.1038/35081178
- Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5–51.
- 8. Garrod, B., Collin, H. A., & Roberts, M. F. (1996). Polyacetylenes in carrot cell cultures. Phytochemistry, 41(1), 55–60.
- Gleadow, R. M., & Møller, B. L. (2014). Cyanogenic glycosides: Synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology, 65, 155– 185.
- Halkier, B. A., & Gershenzon, J. (2006).
 Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57, 303–333.
- Heil, M., & Karban, R. (2010). Explaining evolution of plant communication by airborne signals. Trends in Ecology & Evolution, 25(3), 137–144.
- 12. Hopkins, R. J., van Dam, N. M., & van Loon, J. J. A. (2009). Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annual Review of Entomology, 54, 57–83.
- Lattanzio, V., Lattanzio, V. M. T., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects.

- Phytochemistry: Advances in Research, 661, 23–67.
- Miedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science, 5, 358.
- Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.
- 16. Roddick, J. G. (1989). The steroidal glycoalkaloids. In Solanaceae: Biology and systematics, 285–302.
- Suzuki, T., & Iwai, K. (1984). Constituents of red pepper species: Chemistry, biochemistry, pharmacology, and food science of the pungent principle of Capsicum species. The Alkaloids, 23, 227–299.
- 18. Tholl, D. (2006). Terpene synthases and the regulation, diversity, and biological roles of terpene metabolism. Current Opinion in Plant Biology, 9(3), 297–304.
- van Baarlen, P., van Belkum, A., Summerbell, R. C., Crous, P. W., & Thomma, B. P. (2007). Molecular mechanisms of pathogenicity: How do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiology Reviews, 31(3), 239–277.
- 20. Verhage, A., van Wees, S. C. M., & Pieterse, C. M. J. (2010). Plant immunity: It's the hormones talking. Plant Physiology, 154(2), 536–540.
- 21. War, A. R., Paulraj, M. G., War, M. Y., & Ignacimuthu, S. (2012). Role of secondary metabolites in plant defense against insect herbivores. Journal of Plant Interactions, 7(4), 293–304.
- 22. Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3–19.

- 23. Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126(2), 485–493.
- Züst, T., & Agrawal, A. A. (2016). Mechanisms and evolution of plant resistance to aphids. Nature Plants, 2(1), 15206.
- 25. Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., ... & Qi, Y. (2018). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 16(3), 497–510.