

CRAWLING TOWARD CLIMATE RESILIENCE: THE RISE OF INSECT FARMING

Chetna Pathak*, Abhijeet Kuderiya, Upasna Digarse

PhD Research Scholar, Department of Extension Education, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur – 482004 - (M.P.).

*Corresponding Author Mail ID: csapatthak@gmail.com

Introduction

Why Insect Farming?

As global agriculture faces rising input costs, climate stress, and food insecurity, insect farming offers a promising alternative. Insects like black soldier flies, mealworms, and crickets can convert organic waste into valuable products—protein for animal feed, oils, and frass (insect manure) for soil enrichment. For smallholder and marginal farmers, especially in regions like Madhya Pradesh, insect farming can be a game-changer.

Benefits of Insect Farming for Farmers

- Low Input, High Output** Insects require minimal water, space, and feed. They thrive on agricultural waste, reducing feed costs.
- Income Diversification** Farmers can sell insect larvae, protein meal, or frass to poultry, aquaculture, and organic farming markets.
- Sustainable Waste Management** Insects help recycle crop residues, food waste, and manure, reducing methane emissions and landfill pressure.

- Improved Soil Health** Frass is rich in nitrogen, phosphorus, and beneficial microbes—ideal for natural farming.
- Climate Resilience** Insects are hardy and reproduce quickly, making them reliable even under erratic weather conditions.

Step-by-Step Guide to Insect Farming

Step 1: Choose the Right Insect Species

- Black Soldier Fly (BSF)**: Ideal for waste conversion and animal feed.
- Mealworms**: Good for poultry and fish feed.
- Crickets**: Suitable for human consumption and pet food.

BSF is most popular in India due to its fast growth and high protein yield.

Step 2: Set Up the Farming Unit

- Location**: A shaded, well-ventilated area with ambient temperatures (25–35°C).
- Containers**: Use plastic bins, wooden crates, or concrete tanks.
- Biosecurity**: Ensure protection from rodents, ants, and birds.

Step 3: Prepare the Feed Substrate

- Use kitchen waste, fruit peels, crop residues, or poultry litter.
- Chop and mix the waste to maintain moisture (~60–70%).
- Avoid oily, spicy, or chemically treated waste.

Step 4: Introduce the Insects

- Source starter larvae or eggs from a certified supplier or local farmer.
- Spread them evenly over the substrate.
- Maintain temperature and humidity for optimal growth.

Step 5: Monitor Growth and Harvest

- BSF larvae mature in 10–14 days.
- Harvest mature larvae by sieving or allowing them to self-harvest (they crawl out when ready).
- Dry and process larvae for feed or sell them live.

Step 6: Process and Utilize By-products

- **Larvae:** Can be dried, ground, and sold as protein meal.
- **Frass:** Collected from the bottom of bins and used as organic fertilizer.
- **Pupae:** Can be used for breeding or sold to other farmers.

Step 7: Maintain a Breeding Cycle

- Allow 10–20% of larvae to pupate and become adult flies.
- Adults mate and lay eggs on cardboard or mesh near the feed.
- Collect eggs and repeat the cycle.

Applications and Buyers

- **Poultry and fish farmers:** Buy larvae as protein-rich feed.
- **Organic farmers:** Use frass as biofertilizer.
- **Pet food companies:** Use dried insects in formulations.
- **Agri-entrepreneurs:** Package and sell insect-based products.

Challenges and Solutions

Challenge

- Lack of awareness
- Regulatory gaps
- Market linkage
- Cultural resistance

Solution

- Farmer training and demo units
- Engage with FSSAI and agri departments
- Cooperatives and FPOs for bulk sales
- Focus on feed/fertilizer, not direct consumption

Insect Farming in India: Growing Momentum

Startups like Loopworm, Flybox, and Nutu are pioneering insect farming in India. Government schemes under Startup India, RKVY, and Agri-Clinics can support infrastructure and training.

Climate Linkages of Insect Farming

1. Climate-Resilient Livelihoods

- Insects are highly adaptable to temperature fluctuations and require minimal water, making them ideal for regions facing **climate-induced droughts or erratic rainfall**.
- For farmers in vulnerable zones like Dindori, insect farming offers a **low-risk, high-resilience income source**.

2. Mitigation of Greenhouse Gas Emissions

- Compared to livestock, insects emit **significantly lower methane and ammonia**.
- They convert organic waste into protein without the need for large-scale feed crops, reducing **deforestation and fertilizer use**.

3. Circular Agriculture and Waste Valorization

- Insect farming promotes **zero-waste farming systems** by recycling crop residues, food waste, and manure.
- This aligns with climate-smart agriculture principles and supports **carbon-neutral farming models**.

4. Soil Health and Carbon Sequestration

- Insect frass (manure) improves soil organic matter and microbial activity, enhancing **carbon sequestration potential**.
- It reduces reliance on synthetic fertilizers, which are energy-intensive and contribute to **nitrous oxide emissions**.

5. Climate Adaptation and Food Security

- Insects provide a **nutrient-dense protein source** that can supplement diets during climate-related crop failures.
- They support **diversified farming systems**, reducing vulnerability to single-crop dependence.

Case Studies Promoting Insect Farming in India and Madhya Pradesh

1. Loopworm (Bengaluru, Karnataka)

- **Overview:** A pioneering startup that farms black soldier flies (BSF) to convert food waste into high-protein insect meal and organic fertilizer.
- **Impact:** Diverts over 10 tons of food waste daily and supplies insect protein to poultry and aquaculture sectors.
- **Relevance:** Demonstrates scalable, urban-integrated insect farming with circular economy benefits.
- **Climate Link:** Reduces methane emissions from food waste and offers a low-emission protein alternative.

2. Flybox India (Tamil Nadu & Maharashtra)

- **Overview:** Offers modular BSF farming units and training to rural entrepreneurs and farmers.
- **Impact:** Empowers smallholders to earn ₹15,000–₹30,000/month by selling larvae and frass.
- **Relevance:** Promotes decentralized, low-cost insect farming in peri-urban and rural areas.
- **Climate Link:** Encourages natural waste recycling and reduces reliance on chemical fertilizers.

3. NutriEnto (Pilot in Madhya Pradesh, 2023–24)

- **Overview:** A pilot project supported by a local Krishi Vigyan Kendra (KVK) and agri-entrepreneurs in Sehore district.
- **Focus:** Training women SHGs and marginal farmers in BSF farming using crop residues and kitchen waste.
- **Outcomes:** Early adopters reported improved soil fertility and supplemental income from frass sales.
- **Relevance:** Shows potential for gender-responsive, climate-smart insect farming in MP.
- **Note:** This pilot is part of a broader sustainable agriculture initiative under RKVY.

4. ICAR-Central Institute of Fisheries Education (Mumbai)

- **Overview:** Conducted trials on using BSF larvae as fish feed in aquaculture.
- **Findings:** BSF meal improved fish growth rates and reduced feed costs by 30%.
- **Relevance:** Validates insect protein as a viable, eco-friendly alternative to fishmeal and soy.

Key Takeaways

- **Potential for tribal and climate-vulnerable districts** like Dindori to adopt BSF farming using local biomass.
- **Integration with natural farming:** Frass can replace urea/DAP in low-input systems.
- **Women's empowerment:** SHGs can manage small-scale units with minimal training and investment.

Conclusion: A Future-Ready Farming Model

Insect farming is not just a niche—it's a scalable, sustainable, and inclusive model for rural livelihoods. For farmers in tribal and climate-vulnerable regions like Dindori, it offers a low-risk entry into circular agriculture. With proper training, market access, and policy support, insect farming can help build a resilient agri-economy.

REFERENCES

- Flybox. (2025). Insect farming 101. Flybox. Retrieved from [https://flybox.bio/insect-farming-101](<https://flybox.bio/insect-farming-101>)
- Flybox. (2025). Modular insect farming for rural India. Retrieved from <https://flybox.bio>
- ICAR-Central Institute of Fisheries Education. (2023). *Use of black soldier fly larvae as fish feed: A pilot study*. Retrieved from <https://www.cife.edu.in>

- Loopworm. (2025). Turning food waste into insect protein. Retrieved from <https://www.loopworm.com>
- Maps of India. (2023, August 18). Insect farming: History, benefits and process. Maps of India. Retrieved October 14, 2025, from [https://www.mapsofindia.com/my-india/health/insect-farming-history-benefits-and-process] (<https://www.mapsofindia.com/my-india/health/insect-farming-history-benefits-and-process>)
- NutriEnto. (2024). Pilot project on BSF farming in Sehore district, Madhya Pradesh [Unpublished report]. Krishi Vigyan Kendra Sehore.